Carbon–nitrogen transmutation in polycyclic arenol skeletons to access N-heteroarenes

  • Engle, K. M., Mei, T.-S., Wasa, M. & Yu, J.-Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neufeldt, S. R. & Sanford, M. S. Controlling site selectivity in palladiumcatalyzed C–H bond functionalization. Acc. Chem. Res. 45, 936–946 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abrams, D. J., Provencher, P. A. & Sorensen, E. J. Recent applications of C–H functionalization in complex natural product synthesis. Chem. Soc. Rev. 47, 8925–8967 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jurczyk, J. et al. Single-Atom Logic for Heterocycle Editing. Nat. Synth. 1, 352–364 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, F., Anand, L. & Szostak, M. Diversification of indoles and pyrroles by molecular editing: New frontiers in heterocycle-to-heterocycle transmutation. Chem. Eur. J. 29, e202300096 (2023).

  • Zhaozhong, L., Paramasivam, S., Yongquan, N., Yong, W. & Xihe, B. Skeletal editing of (hetero)arenes using carbenes. Chem. Eur. J. 29, e202301227 (2023).

    Article 

    Google Scholar 

  • Roque, J. B., Kuroda, Y., Göttemann, L. T. & Sarpong, R. Deconstructive diversification of cyclic amines. Nature 564, 244–248 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dherange, B. D., Kelly, P. Q., Liles, J. P., Sigman, M. S. & Levin, M. D. Carbon atom insertion into pyrroles and indoles promoted by chlorodiazirines. J. Am. Chem. Soc. 143, 11337–11344 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jurczyk, J. et al. Photomediated ring contraction of saturated heterocycles. Science 373, 1004–1012 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Woo, J. et al. Scaffold hopping by net photochemical carbon deletion of azaarenes. Science 376, 527–532 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bartholomew, G. L., Carpaneto, F. & Sarpong, R. Skeletal editing of pyrimidines to pyrazoles by formal carbon deletion. J. Am. Chem. Soc. 144, 22309–22315 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reisenbauer, J. C., Green, O., Franchino, A., Finkelstein, P. & Morandi, B. Late-stage diversification of indole skeletons through nitrogen atom insertion. Science 377, 1104–1109 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, S. & Cheng, X. Insertion of ammonia into alkenes to build aromatic N-heterocycles. Nat. Commun. 13, 425 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly, P. Q., Filatov, A. S. & Levin, M. D. A synthetic cycle for heteroarene synthesis by nitride insertion. Angew. Chem. Int. Ed. 61, e202213041 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, J., Lu, H., He, Y., Jing, C. & Wei, H. Cobalt-catalyzed nitrogen atom insertion in arylcycloalkenes. J. Am. Chem. Soc. 144, 22433–22439 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Finkelstein, P. et al. Nitrogen atom insertion into indenes to access isoquinolines. Chem. Sci. 14, 2954–2959 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wight, B. A. et al. Skeletal editing approach to bridge-functionalized bicyclo(1.1.1)pentanes from azabicyclo(2.1.1)hexanes. J. Am. Chem. Soc. 145, 10960–10966 (2023).

    Article 

    Google Scholar 

  • Hang, L. et al. Rhodium-catalyzed intramolecular nitrogen atom insertion into arene rings. J. Am. Chem. Soc. 145, 11750–117576 (2023).

    Google Scholar 

  • Zhong, H. et al. Skeletal metalation of lactams through a carbonyl-to-nickel-exchange logic. Nat. Commun. 14, 5273 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Campos, K. R. et al. The importance of synthetic chemistry in the pharmaceutical industry. Science 363, eaat0805 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bartholomew, G. L. et al. 14N to 15N isotopic exchange of nitrogen heteroaromatics through skeletal editing. J. Am. Chem. Soc. 146, 2950–2958 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tolchin, Z. A. & Smith, J. M. 15NRORC: An azine labeling protocol. J. Am. Chem. Soc. 146, 2939–2943 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, Q. et al. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat. Chem. https://doi.org/10.1038/s41557-023-01428-2 (2024).

  • Morofuji, T., Nagai, S., Watanabe, A., Inagawa, K. & Kano, N. Streptocyanine as an activation mode of amine catalysis for the conversion of pyridine rings to benzene rings. Chem. Sci. 14, 485–490 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morofuji, T., Inagawa, K. & Kano, N. Sequential ring-opening and ring-closing reactions for converting para-substituted pyridines into meta-substituted anilines. Org. Lett. 23, 6126–6130 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morofuji, T., Kinoshita, H. & Kano, N. Connecting a carbonyl and a π-conjugated group through a p-phenylene linker by (5+1) benzene ring formation. Chem. Commun. 55, 8575–8578 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cabrera-Pardo, J. R., Chai, D. I. & Kozmin, S. A. Silver-promoted benzannulations of siloxyalkynes withpyridinium and isoquinolinium salts. Adv. Synth. Catal. 355, 2495–249 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fout, A. R., Bailey, B. C., Tomaszewski, J. & Mindiola, D. J. Cyclic denitrogenation of n-heterocycles applying a homogeneous titanium reagent. J. Am. Chem. Soc. 129, 12640–12641 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karmacharya, U. et al. Novel pyridine bioisostere of cabozantinib as a potent c-met kinase inhibitor: synthesis and anti-tumor activity against hepatocellular carcinoma. Int. J. Mol. Sci. 22, 9685 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dossetter, A. G., Douglas, A. & O’Donnell, C. A matched molecular pair analysis of in vitro human microsomal metabolic stability measurements for heterocyclic replacements of di-substituted benzene containing compounds − identification of those isosteres more likely to have beneficial effects. Med. Chem. Commun. 3, 1164–1169 (2012).

    Article 
    CAS 

    Google Scholar 

  • Sodano, T. M., Combee, L. A. & Stephenson, C. R. J. Recent advances and outlook for the isosteric replacement of anilines. ACS Med. Chem. Lett. 11, 1785–1788 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pennington, L. D. & Moustakas, D. T. The necessary nitrogen atom: a versatile high-impact design element for multiparameter optimization. J. Med. Chem. 60, 3552–3579 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patel, S. C. & Burns, N. Z. Conversion of aryl azides to aminopyridines. J. Am. Chem. Soc. 144, 17797–17802 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pearson, T. J. et al. Aromatic nitrogen scanning by ipso-selective nitrene internalization. Science 381, 1474–1479 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Woo, J., Stein, C., Christian, A. H. & Levin, M. D. Carbon-to-nitrogen single-atom transmutation of azaarenes. Nature 632, 77–82 (2023).

    Article 
    ADS 

    Google Scholar 

  • Ding, Q., Ye, Y. & Fan, R. Recent advances in phenol dearomatization and its application in complex syntheses. Synthesis 45, 1–14 (2012).

    Article 

    Google Scholar 

  • Zheng, C. & You, S.-L. Catalytic asymmetricdearomatization by transition-metal catalysis: a method for trans-formations of aromatic compounds. Chem 1, 830–857 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wertjes, W. C., Southgate, E. H. & Sarlah, D. Recent advances in chemical dearomatization of nonactivated arenes. Chem. Soc. Rev. 47, 7996–8017 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huck, C. J. & Sarlah, D. Shaping molecular landscapes:Recent advances, opportunities, and challenges in dearomatization. Chem 6, 1589–1603 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, B., Ruffoni, A. & Leonori, D. A photochemical strategy for ortho-aminophenol synthesis via dearomative-rearomative coupling between aryl azides and alcohols. Angew. Chem. Int. Ed. 62, e202310540 (2023).

    Article 
    CAS 

    Google Scholar 

  • Mykura, R. et al. Synthesis of polysubstituted azepanes by dearomative ring expansion of nitroarenes. Nat. Chem. https://doi.org/10.1038/s41557-023-01429-1.

  • Li, G., Lavagnino, M. N., Ali, S. Z., Hu, S. & Radosevich, A. T. Tandem C/N-Difunctionalization of Nitroarenes: Reductive Amination and Annulation by a Ring Expansion/Contraction Sequence. J. Am. Chem. Soc. 145, 41–46 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sundberg, R. J., Suter, S. R. & Brenner, M. Photolysis of 0-substituted aryl azides in diethylamine. Formation and autoxidation of 2-diethylamino-1H-azepine intermediates. J. Am. Chem. Soc. 94, 513–520 (1972).

    Article 
    CAS 

    Google Scholar 

  • Sundberg, R. J. & Suter, S. R. Structural rearrangements of aryl nitrenes and related intermediates. J. Org. Chem. 35, 827–828 (1970).

    Article 
    CAS 

    Google Scholar 

  • Sundberg, R. J., Das, B. P. & Smith, R. H. Photochemical deoxygenation of aromatic nitro compounds in triethyl phosphite. Substituent effects and evidence for the involvement aryl nitrenes. J. Am. Chem. Soc. 91, 658–668 (1969).

    Article 
    CAS 

    Google Scholar 

  • He, Y., Wang, J., Zhu, Z. & Wei, H. Nitrogen atom insertion into arenols to access benzazepines. Chem. Sci. 15, 2612–2617 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneider, N., Lowe, D. M., Sayle, R. A., Tarselli, M. A. & Landrum, G. A. Big data from pharmaceutical patents: a computational analysis of medicinal chemists’ bread and butter. J. Med. Chem. 59, 4385–4402 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Taylor, R. D., MacCoss, M. & Lawson, A. D. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yungeng, L., Ka-Pang, S., Vanessa Kar-Yan, L. & Chi-Ming, C. Iron- and Ruthenium-Catalyzed C–N Bond Formation Reactions. Reactive Metal Imido/Nitrene Intermediates. ACS Catal. 13, 1103–1124 (2023).

    Article 

    Google Scholar 

  • Luo, Y., Zhang, X. & Xia, Y. Recent advances in transition-metal catalyzed nitrene transfer reactions with carbamates. Chin. Chem. Lett. 35, 108778 (2024).

    Article 
    CAS 

    Google Scholar 

  • Sun, H.-C. et al. Solid-state white light-emitting electrochemical cells using iridium-based cationic transition metal complexes. J. Am. Chem. Soc. 130, 3413–3419 (2008).

    Article 

    Google Scholar 

  • Namanga, J. E. et al. Fluorinated cationic iridium(iii) complex yielding an exceptional, efficient, and long-lived red-light-emitting electrochemical cell. ACS Appl. Energy Mater. 3, 9271–9277 (2020).

    Article 
    CAS 

    Google Scholar 

  • Feng, S. et al. Catalytic asymmetric (4 + 2) cycloaddition of ortho-alkenyl naphthols/phenols with ortho-quinone methides: Highly stereoselective synthesis of chiral 2,3,4-trisubstituted chromans. J. Org. Chem. 85, 5231–5244 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patonay, T., Micskei, K., Juhász-Tóth, É., Fekete, S. & Pardi-Tóth, V. C. α-Azido ketones, Part 6. Reduction of acyclic and cyclic α-azido ketones into α-amino ketones: old problems and new solutions. ARKIVOC vi, 270−290 (2009).

  • We proposed that the byproduct 45 might be derived from (4+2) cyclization between ring expansion intermediate (Fig. 1D, II) and azide elimination product of 44. The detailed procedure can be seen in Supplementary Information, section 2.4.

  • Wei, K., Yang, T., Chen, Q., Liang, S. & Yu, W. Iron-catalysed 1,2-aryl migration of tertiary azides. Chem. Commun. 56, 11685–11688 (2020).

    Article 
    CAS 

    Google Scholar 

  • Szostak, M., Yao, L. & Aubé, J. Proximity effects in nucleophilic addition reactions to medium-bridged twisted lactams: remarkably stable tetrahedral intermediates. J. Am. Chem. Soc. 132, 2078–2084 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bagdanoff, J. T., Behenna, D. C., Stockdill, J. L. & B. M. Stoltz. Enantioselective synthesis of caprolactam and enone precursors to the heterocyclic DEFG ring system of zoanthenol. Eur. J. Org. Chem. 2016, 2101–2104 (2016).